本发明公开一种基于构造-剪枝混合优化RBF网络的煤灰熔点预测方法,其特征在于:该方法分为“粗调”和“精调”两个阶段,粗调阶段按照以使能量函数最小为原则动态增加隐节点数目,选取相应的样本输入作为数据中心,直至隐节点数满足停止准则时停止;精调阶段用Gaussian正则化方法对粗调得到的RBF网络的结构和参数作进一步调整;基于煤灰的化学组成成分建立相应的构造-剪枝混合优化RBF网络,并以该网络预测煤灰熔点。本发明给出的构造-剪枝混合优化算法(CPHM),有效地融合了构造算法和剪枝算法的优点,不仅能动态调节RBF网络的隐节点数,还能使网络的数据中心自适应变化;具有较小的结构、较好的泛化能力和较强的鲁棒性。
声明:
“基于构造-剪枝混合优化RBF网络的煤灰熔点预测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)