本发明公开了一种基于矿物相与神经网络复合模型预测煤灰熔融温度的方法,首先建立煤灰矿物相组成子模型,利用高温下化学组分相互反应产生的吉布斯自由能变化,建立线性规划问题,建立求解指定温度下煤灰矿物相组成的预测模型,并对此模型的一致性进行检验;在矿物相组成子模型的基础上,建立灰熔点预测子模型;建立神经网络模型,对神经网络的各项训练参数进行调校,并采用迭代算法进一步加强预测模型的预测精度,同时加入修正值,用以表示煤灰中次要元素对煤灰熔融性的影响,最后对所建立的模型的精确度和可靠性进行分析,确立预测结果精确性指标,并与支持向量机预测方式的预测结果进行比较。本发明建立的模型具有较高的可靠性。
声明:
“基于矿物相与神经网络复合模型预测煤灰熔融温度的方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)