本发明基于机器视觉的材料缺陷智能检测系统,包括:数据采集模块;深度学习训练数据模块:用于神经网络识别的基础训练库图片素材,包含基本的待识别的各种缺陷明显的素材数据库;机器学习识别过程中增加的特征库;当对材料断层裂纹的识别率提升到了一定程度后的成熟训练库;测量模块;卷积神经网络算法模块:对图像各种缺陷的特征提取,分类计算,卷积计算,深化学习过程,迭代检测;训练库:包括基础数据库、深入学习库和成熟型各种缺陷特征库,训练库是该软件宝贵的学习资源,也是软件越发走向成熟的必然结果和有力保障,深度学习智能图像识别技术会将训练库迭代优化到越发精准的磁性材料裂纹数据;以及结构输出模块。
声明:
“基于机器视觉的材料缺陷智能检测系统及方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)