本发明属于无线传感器网络技术领域,具体涉及一种基于深度强化学习的异构网络节能路由方法,传感器节点根据自身传感器的预定义计划感知环境,收集观测数据并存入对应的缓存队列;并在等待时间内,接收邻居节点传送的聚合数据并存入对应的缓存队列;传感器节点将同一缓存队列中的数据聚合,得到多种类型的聚合数据;根据Q学习自适应算法选择每种类型的聚合数据的下一跳传感器节点并转发;传感器节点根据下一跳传感器节点的响应更新对应传感器的Q表,本发明基于机器学习的自适应路由实现对网络动态变化的实时捕获,用较小的开销实现对整个网络的动态掌控,具有较好的节能性能,有效的延长了网络生命周期。
声明:
“基于深度强化学习的异构网络节能路由方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)