本发明公开了一种基于动态层级通信网络的多智能体强化学习方法及系统,方法包括:S100,编码当前时刻观测信息和历史信息,获得当前时刻观测特征和依赖特征,并进行预决策;S200,基于注意力机制,根据预决策信息与观测特征,获取依赖矩阵;S300,基于最小生成树算法,动态生成层级关系网络并进行选择性有向地通信,生成联合决策并与环境交互,收集经验数据;S400,基于线性值分解网络,为每个智能体分配状态‑动作值函数,更新智能体策略网络;S500,基于内在奖励机制,根据演员‑评论家框架更新层级网络参数。在该方法中,多智能体利用动态生成的层级通信网络进行选择性的观测信息和意图信息共享,基于条件状态‑动作值分解网络和内在通信奖励,减少环境的非稳态问题,并对联合策略及层级通信协议进行高效的学习和更新。
声明:
“基于动态层级通信网络的多智能体强化学习方法及系统” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)