本发明提供了一种基于深度强化学习的机器人自适应抓取方法,步骤包括:在距离待抓取目标一定距离时,机器人通过前部的摄像头获取目标的照片,再根据照片利用双目测距方法计算出目标的位置信息,并将计算出的位置信息用于机器人导航;当目标进入机械手臂抓范围内时,再通过前部的摄像头拍摄目标的照片,并利用预先训练过的基于DDPG的深度强化学习网络对照片进行数据降维特征提取;根据特征提取结果得出机器人的控制策略,机器人利用控制策略来控制运动路径和机械手臂的位姿,从而实现目标的自适应抓取。该抓取方法能够对大小形状不同、位置不固定的物体实现自适应抓取,具有良好的市场应用前景。
声明:
“基于深度强化学习的机器人自适应抓取方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)