本发明公开了一种基于强化学习的自动化机器学习方法,包括以下步骤:使用统一的API接口,屏蔽不同的机器学习算法库之间的异构性,以Python作为编程语言,在Python语言中调用不同机器学习算法库中的算法;将自动化机器学习问题建模为强化学习问题,对候选机器学习算法进行状态空间划分,确定状态间的转移关系,并采用Q‑Learning算法完成搜索机器学习流水线的过程;对数据集进行元特征提取,搜索最相似数据集,并利用所述最相似数据集上的运行信息来加速自动化机器学习的收敛过程。本发明解决了现有的自动化机器学习系统收敛速度慢、可扩展性差以及最终预测性能达不到预期的问题。
声明:
“基于强化学习的自动化机器学习方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)