基于深度强化学习的移动终端软件自适应优化调度方法,涉及计算技术。自动优化设置移动设备上各软件进程卸载数量,并且对本地任务进程划分优先级,分配CPU计算资源和内存资源,旨在降低移动设备的能量损耗,减少任务处理时延。通过测量移动设备上各软件的实时线程任务的规模,估测移动设备至边缘设备动态无线链路的带宽,采用深度强化学习算法评估各个进程的时延,能量损耗等反馈信息,获取软件的优化调度方案。不需要预知移动设备到边缘设备的无线信道模型和移动设备系统的CPU计算资源和内存资源占用模型,即可减少移动设备上各软件任务处理时延和能量损耗,改善用户体验。
声明:
“基于深度强化学习的移动终端软件自适应优化调度方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)