基于分布式多智能体强化学习的电网多断面功率自动控制方法,通过多智能体与电力仿真环境交互,能够自主学习合适的用于复杂电网的多断面功率控制策略。首先根据电网控制的需要选取N个目标断面,并依此构建强化学习方法的环境、智能体、观测状态、动作、奖励函数等基本元素;其次运行多断面功率控制任务交互环境,创造初始潮流数据集;之后,为每个智能体构造基于深度神经网络的决策网络和估值网络,构建MADDPG(多智能体深度确定性策略梯度)模型并引入分布式方法进行训练自主学习最优控制策略;最后,应用训练完成的策略网络自动断面控制。本发明的优点在于,采用多智能体强化学习方法处理复杂的电网多断面功率控制问题,具有较高的控制成功率且无需专家经验,同时引入分布式方法大幅提升了智能体训练效率。
声明:
“基于分布式多智能体强化学习的电网多断面功率自动控制方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)