本发明公开了一种基于强化学习的线上社交网络信息源头检测的方法,针对庞大的在线社交网络,当观测整个网络不可行或是对整个网络进行计算不可行时,采用观察网络局部的状态来收集信息;观测庞大社交网络有限的局部信息,同时对网络结构和传播状态进行观察,构造社交网络信息传播的局部特征矩阵;针对收集到的信息,使用强化学习方法来拟合函数近似器,用于判决传播重要节点或源头;对判决过程中收集到的节点信息和观测子图的特征矩阵进行整合,完善强化学习策略的输入信息,提升检测信息传播源头的准确度。该方法能够对在线社交网络中的信息传播源头进行检测,且有效解决了对庞大网络观测或计算能力不足的问题。
声明:
“基于强化学习的线上社交网络信息源头检测的方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)