本发明公布了一种基于深度强化学习的Faster‑RCNN目标物体检测方法,采用深度强化学习的经验池保存每个时刻的区域建议网络RPN的状态,采用卷积门控循环单元输出两个动作,采用随机策略选择执行相应的动作,同时采用自定义的非极大值抑制方法去除冗余的检测框,获得与标注框最接近的检测框;采用分类网络对检测框进行分类,对检测框进行二次回归,实现对目标物体的检测与识别。采用本发明技术方案,目标定位准确,目标检测精度高。
声明:
“基于深度强化学习的Faster-RCNN目标物体检测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)