本申请实施例提供了一种恒温复合结构和恒温垫,解决了现有恒温装置需要依赖电能不间断供热而导致安全隐患、结构复杂以及不便于生产和使用的问题。该恒温复合结构包括:相变复合材料层,构造为从热量提供层吸收热量发生相变以储存热量,并通过逆相变过程释放热量以维持恒温;所述热量提供层,设置在所述相变复合材料层一侧,构造为向所述相变复合材料层提供热量;以及热量反射层,设置在所述热量提供层远离所述相变复合材料层的一侧,构造为反射所述热量提供层以及所述热量提供层释放的热量。
锂/聚吡咯二次扣式电池及其制备方法,属于用聚吡咯/二氧化硅或炭黑纳米复合材料的锂/聚合物二次扣式电池及其制备技术。本发明为了提高二次电池性能,满足社会的需求,提供一种新型二次扣式电池。它主要由涂覆含聚吡咯/二氧化硅或炭黑纳米复合材料的正极涂覆材料的正极片、负极锂片,三层微孔复合膜和电解质构成的二次扣式电池。其组装是在氩气手套箱中,将锂片放在负极壳内,铺放隔膜,滴入电解液;再将已制好的正极片置于隔膜上,压上垫片,放上弹簧片,扣上正极壳,在压机上将电池封口成型,制成扣式电池。该电池放电容量、库仑效率和循环寿命较高,且静置稳定性较好。本发明工艺简单、易于工业化生产,为锂/聚合物二次电池增加了新品种。
本发明公开了一种提高超高分子量聚乙烯纤维与环氧树脂界面粘结性的方法。本发明首先以K2S2O8、AgNO3和环氧树脂(EP)改性的超高分子量聚乙烯(UHMWPE)纤维为原料,环氧树脂为基体,以1,3‑二(氨甲基)苯(m‑XDA)为固化剂,无水乙醇为稀释剂,使用浇注的方法制备超高分子量聚乙烯纤维复合材料。与原复合材料相比,该复合材料的纤维与树脂基体界面的粘结性显著提高,并且有着优异的拉伸弯曲和抗冲击性能。本发明制备方法简单,在树脂基复合材料领域有着广泛的应用前景。
本发明涉及材料制备技术领域,具体公开一种TiO2@ZIF‑67复合纳米材料及其制备方法和应用。制备方法如下:将可溶性钴盐的醇溶液,加入纳米二氧化钛的醇分散液中,混合均匀,然后加入2‑甲基咪唑的醇溶液,超声反应,得TiO2@ZIF‑67前驱体;另取可溶性钴盐的醇溶液,加入TiO2@ZIF‑67前驱体,分散均匀,然后将分散液加入水热釜中,于130‑150℃反应3‑4h,得TiO2@ZIF‑67复合纳米材料。本发明制备的复合材料为具有三维花瓣状结构的新型复合材料,可通过简单的物理吸附高效去除偶氮染料,极大地提高了吸附效率,同时,具有良好的重复利用性,在偶氮染料水处理技术领域具有较高的工业推广价值。
本发明提供一种锂硫电池正极材料及其制备方法和锂硫电池。本发明提供的锂硫电池正极材料为钴酸盐(钴酸镁、钴酸镍、钴酸铜和钴酸锌)和硫单质形成的复合材料,所述的硫单质的含量为60~90 wt%。本发明提供的钴酸盐对多硫化物具有极强的吸附作用,可以有效抑制多硫化锂在醚类电解液中的溶解,减缓电池充放电过程中的穿梭效应,降低锂硫电池的容量衰减,提高电池寿命。本发明提供的锂硫电池在0.1 C电流下,初始放电容量为955 mAh/g(按复合材料计算),100次循环后容量为722 mAh/g,容量保持率为75.6%。
本发明为一种基于聚丙烯(PP)的改性材料。该材料由以下组分组成:高分子基体聚丙烯、聚甲醛、乙烯-醋酸乙烯共聚物、稀土β成核剂和抗氧剂,其质量的配比为:高分子基体聚丙烯∶聚甲醛∶乙烯-醋酸乙烯共聚物∶稀土β成核剂∶抗氧剂=100∶2-13∶5-25∶0.2-0.8∶0.2。本发明的聚丙烯改性材料,可以获得可协同实现聚丙烯大幅增强、增韧的高性能化材料,使改性PPR复合材料的冲击强度由纯PPR的10.3kJ/m2提高到15.4kJ/m2,极大的提高了复合材料的冲击性能;稀土β成核剂的加入对复合材料断裂伸长率的贡献十分明显,改性PPR复合材料的断裂伸长率是未加时的3倍多。
本发明公开了一种提高十六烷值加氢改质催化剂、制备方法及其应用。本发明加氢改质催化由活性组分、载体及助剂组成;所述的活性组分由第VIB族金属和第VIII族金属中的一种或者几种,所述的载体由SAPO‑5或Beta/无定形硅铝复合材料、大孔氧化铝与SB粉共同组成,所述的助剂为B、F、P中的一种或者几种;催化剂组分质量含量为:SAPO‑5或Beta/无定形硅铝复合材料为25~50wt%、VIB族金属为12~20wt%、VIII族金属为4~8wt%、助剂为0~4wt%,其余组分为γ‑Al2O3;比表面积为300~380m2/g,孔容为0.35~0.60cm3/g,平均孔径8~12nm,机械强度不低于45N/mm。本发明催化剂在阻止柴油馏分裂解的基础上,实现多环芳烃组分加氢饱和与适度开环,并有效的脱除柴油中硫组分与氮组分。
本发明公开了聚苯胺—磺化石墨烯复合电极材料及其制备方法,以苯胺单体和磺化石墨烯充分混合均匀,原位聚合合成聚苯胺/磺化石墨烯复合材料,并使用硫酸进行掺杂,将复合材料、乙炔黑和聚偏氟乙烯进行混合,使用N-甲基吡咯烷酮为溶剂,将浆料涂覆在集流体不锈钢片上干燥,即可得到复合电极材料。本发明制备方法过程简单,快速和环保,其制得的复合电极材料,具有比电容高,倍率性能优异,循环稳定性好等优点,适合用于超级电容器电极材料。
本发明公开了一种利用工业粉煤灰和纳米铁处理含重金属污染物工业废水的方法。首先在常温下将利用工业粉煤灰和氯化铁溶液充分混合,然后在混合溶液中滴加硼氰化钠将三价铁离子还原成零价纳米铁,并负载到粉煤灰颗粒上,制成粉煤灰—纳米铁复合材料。在含重金属污染物的工业废水中加入粉煤灰—纳米铁复合材料,在常温下处理并回收粉煤灰—纳米铁复合材料。经沉淀后的上清液可满足相关的污水综合排放标准直接排放;其中纳米零价铁的含量占复合材料的质量比为10%;含重金属污染物废水的浓度为≤100 mg/L,含重金属废水的pH值为5.6~9。该方法能够充分利用粉煤灰中纳米级二氧化硅颗粒具有大比表面积,并提高含重金属污染物工业废水的去除率,同时改善纳米铁的易氧化、易团聚和吸附剂回收困难等问题,并可提高效率和节约成本,达到了减少水环境污染和资源回收综合利用的目的。
本发明公开了一种锑掺杂二氧化锡包覆多孔二氧化锰复合电极材料及制备方法。该复合材料为核壳结构,平均粒径为400-600nm,外层为锑掺杂二氧化锡包覆层,核为多孔二氧化锰球形粒子,复合材料中锰元素与锡元素摩尔比为100:(5~20),锡元素与锑元素摩尔比为100:(2~6)。制备步骤包括:碳酸钠与硫酸锰反应得到碳酸锰,四氯化锡与三氯化锑溶于乙醇水溶液配制成溶胶,加入碳酸锰,利用溶胶凝胶法得到锑掺杂二氧化锡包覆碳酸锰复合材料,将得到的复合材料进行煅烧,制得锑掺杂二氧化锡包覆多孔二氧化锰复合电极材料。本发明制备方法简单,所得电极材料比容量高,循环稳定性好,可作为新型超级电容器电极材料。
本发明涉及一种金属有机框架Uio‑66@S锂硫正极材料及制备方法。本发明属于锂硫电池技术领域。金属有机框架Uio‑66@S锂硫正极材料,由金属-有机框架Uio‑66@S复合材料与导电剂、粘结剂混合而成,金属-有机框架Uio‑66@S复合材料为金属盐与对苯二甲酸生成的金属-有机框架材料与硫混合球磨而成。其制备方法:1)金属‑有机框架材料Uio‑66的合成:取金属盐与对苯二甲酸反应生成金属‑有机框架材料;2)Uio‑66@S复合材料的形成:与硫混合球磨均匀,采用熔融法形成Uio‑66@S复合材料;3)电极材料的制备:与导电剂、粘结剂在溶剂中搅拌均匀形成浆料并涂覆在集流体上,烘干裁片。本发明具有极高的比表面积,丰富的介孔孔道,制备工艺简单,成本低廉,可大规模生产等优点。
本发明涉及一种复合涂层负极板铅酸蓄电池的制备方法,包括用隔板将正极板与负极板隔离开,负极板两面制作复合涂层;所述复合涂层的制作过程包括:⑴将粉末状混合物制成膏状复合材料;⑵将膏状复合材料制于负极板两面;⑶将负极板继续干燥至复合涂层的总重量占负极板中活性物质重量的3.3%,冷却后。本发明通过将粉末状混合碳制成膏状,再进行膏状复合材料制作,将膏状复合材料制于负极板表面、负极板两面形成具有高导电性的复合涂层,既增加了铅离子转化为铅金属反应途径,提高了铅离子转化为铅金属转化速度,防止了硫酸铅聚集造成硫酸盐化,又防止了因材料喷洒造成的环境污染,工艺简单、制作成本低廉、绿色环保,易于实现产业化。
本发明公开锂离子电池硅碳负极材料的制备方法,采用含氨基或铵根离子的化合物修饰纳米硅,使其带正电荷,采用修饰阴离子或氧化的方案使碳骨架带负电荷,在溶剂中,带相反电荷的硅和碳骨架自组装成复合材料,再在其表面包覆热解碳。与现有的制备硅/碳复合材料方法相比,本发明所采用的自组装方法条件温和,步骤简单,不需要复杂昂贵的设备,有利于大规模推广。且制备的硅/碳复合材料充放电循环200次后放电比容量大于500mAh·g‑1,相比于简单混合制备的硅/碳复合材料的电化学性能有显著提高。
提供了一种二次电池负极、其制备方法和包括该负极的二次电池。二次电池负极由集流体和位于集流体单面或双面的锂膜和/或锂复合材料膜组成,锂膜或锂复合材料膜的厚度范围为大于等于1微米至小于40微米。制备二次电池负极的方法包括:通过真空镀膜,在集流体的单面或双面上形成锂膜和/或锂复合材料膜。可以针对不同的电池体系镀不同的膜厚度,使金属锂或锂复合材料的容量得到充分发挥。
本发明提供了一种安全印刷用磁定向母版及其制备方法,该方法包括如下步骤:(1)根据设计的图案,利用激光束对塑料复合材料的表面进行蚀刻,气化出所述的设计的图案;(2)将磁性结构胶黏剂注入所述的塑料复合材料上表面蚀刻后形成的凹槽中,将含有磁性结构胶黏剂的塑料复合材料置入控温箱,进行升温,使凹槽中的磁性结构胶黏剂干燥、硬化;(3)所述的磁性结构胶黏剂干燥后,将所述的塑料复合材料的蚀刻上表面打磨、抛光处理,然后印刷封装油墨,并进行干燥处理。本发明所述的安全印刷用磁定向母版的制备方法可以在磁性印刷母版上构成预设的各种磁化区域组合,进而能够在印刷品表面上产生出多变的图案效果。
本发明属于燃料电池技术领域,公开了一种用于生物质碱性燃料电池的阳极材料及其制备方法,石墨烯修饰泡沫镍复合材料单面辊压固定有包裹甲基紫精的碳薄层,其制备方法为先利用氧化还原法制备氧化石墨烯悬浮液;将氧化石墨烯悬浮液作为电解液,泡沫镍作为工作电极,铂电极作为对电极,在泡沫镍两面重复沉积石墨烯得石墨烯修饰泡沫镍复合材料;将制备的包裹甲基紫精的碳薄层平铺在石墨烯修饰泡沫镍复合材料一面上并将其辊压固定,直至达到指定厚度。本发明通过制备石墨烯修饰泡沫镍阳极材料,并将紫精化合物固定在石墨烯修饰泡沫镍复合材料上,提高了生物质碱性燃料电池的性能,制备过程廉价、高效、清洁。
本发明涉及一种制备内嵌Sb@Sb2O3核壳结构纳米颗粒的氮掺杂碳纳米片围成的三维微球方法,包括下列步骤:制备前驱体:以醋酸锑((CH3COO)3Sb)、柠檬酸铵(C6H5O7(NH4)3)和氯化钠(NaCl)为原料制备混合溶液,利用喷雾干燥的方法喷雾成球,制得前驱体(记为NaCl@(CH3COOH)3Sb‑C6H5O7(NH4)3),将获得的白色粉末收集备用;制备内嵌Sb纳米颗粒的氮掺杂碳纳米片围成的三维微米球复合材料;制备内嵌Sb@Sb2O3核壳结构纳米颗粒的氮掺杂碳纳米片围成的三维微米球复合材料。
本发明涉及一种纳微尺寸金属陶瓷材料连接方法。采用物理气相沉积技术将粘结剂与金属陶瓷材料混合,制备获得金属陶瓷复合材料;将上述制备好的金属陶瓷复合材料与待连接材料贴合在一起,对其进行真空热处理;热处理后粘结剂将从金属陶瓷复合材料中析出到金属陶瓷与待连接材料之间,从而将金属陶瓷与待连接材料连接在一起。粘结剂可通过陶瓷材料的内部间隙迁移至材料的表面,从而在陶瓷材料表面上自动形成粘结层,使得金属陶瓷基复合材料与待连接材料连接在一起。整个连接过程无需在待连接材料间隙中另外放置中间层或粘结剂,反应环保、安全、简单,并且可以完成纳微尺寸待连接材料的连接。
本发明公开了一种锂硫二次电池复合正极材料的制备方法,包括以下步骤:(1)在惰性气氛中,将单质硫加入球磨机中球磨0.5~2小时,得到粒度D50≤100μm的分散硫粉;(2)依次将包覆材料、所述分散硫粉加入到机械融合机中融合,得到复合材料前驱体;(3)将制得的复合材料前驱体放入充满惰性气氛的密闭容器中,先在400℃熔融10~12小时,使硫粉融入包覆材料中,再在200℃熔融挥发10~30分钟,使包覆材料外表面沾附的硫粉挥发掉,得到所述锂硫二次电池复合正极材料。该方法制备的复合正极材料包覆均匀抑制了硫活性物质的流失,增强了传输电子的能力,提高了电性能。
本发明提供了一种用于重金属/有机复合污染土壤修复的绿色淋洗剂,包括生物可降解复合材料和基体溶剂,生物可降解复合材料由乙二胺四乙酸二钠和氧化石墨烯包裹在壳聚糖纳米颗粒表面组装形成,基体溶剂包括脂肪醇聚氧乙烯醚0.1‑1份、Tween‑80 0.5‑5份、乙酸乙酯15‑25份、乙醇5‑20份、水49‑80份。本发明EDTA和GO表面嫁接在CS纳米颗粒上促进了吸附性能,有利于EDTA螯合重金属,起到协同增强去除重金属效果;CS与GO作为生物可降解组分,降低EDTA对土壤土著菌群的抑制效应,为土壤土著菌群提供营养物质,活化土壤,此外,该复合材料为固体颗粒,易于保存存放,且核壳结构复合材料利用率高,降低了药剂消耗。
本发明属于除臭剂加工技术领域,具体地说是膨润土除臭剂及其制备工艺。该膨润土除臭剂组分及其重量份数比为:膨润土粉70~80份、电气石粉35~45份、纳米TiO2粉35~45份、羟基磷灰石粉30~45份、竹炭粉20~25份、香樟叶10~15份、蒙密花10~15份、紫萁15~20份、灯笼草10~15份、苦皮藤8~12份、萹蓄15~18份。制备工艺为先将膨润土改性,再与电气石、纳米TiO2复合制备复合材料,再将植物原料进行粉碎,最后将复合材料、植物粉碎原料和羟基磷灰石粉、竹炭粉混合即得本发明的除臭剂。本发明的除臭剂除臭效果好、对人体无害、对环境无污染,能从根本上去除臭味物质,使用安全方便。
一种双重可控释放果蔬保鲜纸,该双重可控释放果蔬保鲜纸由三层纸塑复合材料或二层纸塑复合材料及一层原纸和二种不同的可控释放保鲜剂组成;不同保鲜剂分别放置于由三层纸塑复合材料或二层纸塑复合材料及一层原纸形成的二夹层中间;保鲜剂在夹层中呈非连续方格状分布。通过选择保鲜剂有效成分的种类、改变保鲜剂配方控制释放速度、调整保鲜纸结构材料的透气、透湿性能指标来达到创造最适宜的防腐杀菌贮藏保鲜环境的目的,大幅度延长了保鲜产品运输保鲜期和提高产品品质,增加运输保鲜经济效益。通过全方位、多因素的调控,双重可控释放果蔬保鲜纸可满足现有绝大多数果蔬品种的运输保鲜要求,并在静态保鲜方面也具有很高的应用价值。
本发明涉及一种用于锂硫电池正极材料的NiCo2S4包覆多孔碳骨架的制备方法,包括下列步骤:制备氮掺杂的多孔碳骨架。制备C@NiCo‑LDH复合材料:将上一步制得的氮掺杂的多孔碳骨架与六水合硝酸钴、六水合硝酸镍、乌洛托品以及柠檬酸钠按摩尔比10‑15:60‑120:30‑60:30:10加入去离子水中,搅拌均匀后,在70‑90℃下进行油浴,冷凝回流3‑6h,用去离子水和酒精对反应产物进行离心,烘干后即得到NiCo‑LDH包覆多孔碳复合材料,记为C@NiCo‑LDH。制备C@NiCo2S4复合材料。在C@NiCo2S4复合材料上负载硫。
本发明属于环境复合材料制备领域,具体为用于水二次处理的二维蜂窝状ZnO/沸石的制备方法。首先利用粉煤灰制备出人工合成沸石;然后通过溶胶凝胶法配制ZnO种子层溶液;接着然后将沸石放入上述配好的ZnO种子层溶液中,得到ZnO种子层/沸石复合材料;最后将制备好的ZnO种子层/沸石材料在配置好的ZnO生长溶液中水热处理,得到二维蜂窝状ZnO/沸石复合材料。同时探讨了煅烧温度、ZnO生长溶液浓度、水浴时间等工艺参数对复合材料性能的影响,得到了制备二维蜂窝状ZnO/沸石的最佳工艺参数。该工艺过程简单,便于控制,易于实现。
本发明涉及一种合成锂离子电池高容量负极材料的方法。它是以碳纳米管为原料,按一定比例将SnCl4·5H2O加入并均匀混合,将混合物放入密闭容器中,在一定温度下进行热处理,使SnCl4气化后吸附到碳纳米管内,降温后经沉积分解得到Sn(OH)4与碳纳米管的复合材料。随后将吸附有Sn(OH)4的碳纳米管通过机械球磨方法附着到中间相炭微球、人造石墨、天然石墨负极材料的表面,得到最终的理想产物。该产物是以填充了高容量Sn(OH)4纳米粒子的碳纳米管为包覆层,以中间相炭微球、人造石墨或天然石墨为核的新型包覆结构负极材料。本发明与传统的合成工艺相比即提高了传统石墨类负极材料的导电性,又提高了复合材料的容量,同时兼具合成工艺流程简单等优点。
本发明为一种硫基锂离子电池正极材料及其制备方法和应用。该硫基锂离子电池正极材料在制备过程中,采用金属锂粉末锂化硫正极材料:在惰性气氛保护下,采用球磨法或涂覆法实现金属锂粉末与硫-碳基复合材料或硫-聚合物基复合材料等硫基正极的均匀混合,然后向该混合物滴加一定量电解液,经过适宜的锂化时间,得到高度锂化的正极材料。本发明以锂化硫正极的角度切入,代替金属锂负极来提供锂源,节约了锂硫电池的使用以及生产成本,同时避免了金属锂作为负极时所带来的枝晶问题,从而提高了锂硫电池体系的安全性。
本发明公开了一种以纳米烧结粉膜为中间层的互不固溶金属连接工艺,被连接的两个互不固溶的金属棒包括金属A棒和金属B棒,金属A棒的熔点大于金属B棒的熔点,首先对金属A棒和金属B棒表面进行前处理。通过球磨方法制备金属A金属B纳米粉膜中间层,按照金属A棒-纳米烧结粉膜-金属B棒的顺序使用夹具固定叠合后准确选择加压退火时的温度,通过纳米烧结粉膜成功实现了金属A和金属B之间的连接,连接强度达到了155MPa。本发明的关键在于通过金属A和金属B纳米烧结粉膜实现了中间层金属的功能。本发明不仅可用于制备钼/银互不固溶金属棒状复合材料,也同样适用于其它体系的互不固溶金属复合材料的制备,如钼/铜、钨/银和铌/铝等。
本发明公开了一种新的电极修饰方法:先将升华硫与乙炔黑或者超导炭黑按质量比7:2,、1:1或者8:2进行球磨,烘干后制成硫碳复合材料;再将硫碳复合材料与导电剂乙炔黑和粘结剂PVDF按质量比为7:2:1湿法混合,涂敷在铝箔上,烘干后制成电极;再在电极表面涂覆一层含有1%-5%全氟磺酸型物质的膜溶液,制成修饰电极。采用本发明修饰电极作为正极与金属锂组装的锂硫电池具有更好的循环性能和较高的充放电效率,效率达92%以上,远远高于未作修饰时电极电池的效率。
中冶有色为您提供最新的天津天津有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!