一种蛋品无损检测分拣装置及其蛋品声学信号采集单元。具体涉及一种蛋品检测分拣装置及其检测单元,尤其涉及一种融合声学检测技术、超声波检测技术和神经网络诊断技术的蛋品无损检测分拣装置及其蛋品声学信号采集单元。其特征在于:包括以下四个组成部分:蛋品超声波信号采集单元、蛋品声学信号采集单元、蛋品传送分拣单元、数据分析处理系统;利用超声波回声以及摩擦声信号在蛋品不同程度破损时的声学特征差异,提取相应特征参数并通过基于BP神经网络的故障诊断技术对蛋品质量进行无损检测与质量分级;本发明的有益之处在于:本发明提供了一种蛋品无损检测装置,所述装置具有使用简单、可实现蛋品品质检测及分拣流程、准确度高等优点,能有效解决半手工方法消费大量的生产时间、生产效率较低且由于受到人的感官限制,主观性强、检选质量很差、可靠性不足等问题。
本发明公开了一种往复式无损检测装置,属于无损检测领域。该无损检测装置包括无损检测仪和检测头,所述的检测头下方转动设置有夹紧组件,所述的检测头设置在滑块的底部,所述的滑块滑动设置在两组升降块之间,所述的升降块与升降机构相连;所述的滑块上设有用于驱动滑块进行往复滑动的往复机构,所述的滑块还通过间歇组件与夹紧组件相连。本发明通过升降机构可以驱动检测头进行升降,以及通过往复机构可以驱动检测头进行往复直线运动,从而便于检测头对工件进行无损检测。另外,本发明还可以在检测头进行往复直线运动的同时,通过间歇组件带动工件进行间歇转动,从而便于检测头对工件进行较全面的无损检测。
一种钢筋混凝土结构无损检测装置,它涉及钢筋混凝土结构的无损检测领域,包括变频电源、宽线板、电流电压测定仪和导线,宽线板是由工作芯线、感应芯线、集线端头和绝缘胶皮制成,变频电源通过导线连接宽线板上的工作芯线,电流电压测定仪采用导线与宽线板上的感应芯线相连。通过检测感应芯线内的感应电流或电动势变化,即可实现钢筋混凝土结构实时无损检测。本实用新型可对钢筋混凝土结构损伤前后的整体性能(如混凝土开裂及其与钢筋剥离等)进行表征,克服了传统无损检测方法侧重于单一层面的缺点,具有操作简单、性价比高和实时性好等优点,为钢筋混凝土结构的无损检测提供了新途径。
本发明公开了一种声波无损检测方法、装置及系统,涉及无损检测领域。本发明实施例提供的声波无损检测方法通过无线局域网实现控制指令及声波无损检测配置数据等数据的传输,从而避免了进行有线传输时的线路布置,提高了声波无损检测的检测效率。
本发明公开了一种脐橙有效酸度的无损检测方法,包括以下步骤:采集建模样本和检验样本,将超出果面的果梗部分去除;对建模样本和检验样本进行清洗及吹干处理后,采集原始图像;对原始图像进行裁切;去背景处理,并进行边缘检测及果实区域提取,得到脐橙果实区域的RGB图像;将RGB图像转换为HSI图像;统计各HSI图像的色调均值利用最优化方法建立脐橙有效酸度模型;将检测样本的色调均值输入所述无损检测模型,输出检测样本对应的有效酸度。本发明利用脐橙果实区域的色调均值作为有效酸度无损检测的参数,建立脐橙有效酸度无损检测多项式模型,通过最优方法求解模型参数,最终确定脐橙有效酸度无损检测模型,实现无损检测脐橙有效酸度,实用性强。
本发明提供一种无损检测控制装置,通过第一传动环状支架与第二传动环状支架分别套设于待测管道外壁;进而,控制模块控制第一传动模块和第二传动模块驱动主体支架移动;并接收第一无损检测模块的检测数据和/或第二无损检测模块的检测数据;根据第一无损检测模块的检测数据和/或第二无损检测模块的检测数据确认待测管道内的氧化堆积情况。进而通过将该第一无损检测模块和第二无损检测模块分别设置于对应的环形轨道内,使得该第一无损检测模块和第二无损检测模块可以在该环形轨道内移动,从而减少了第一无损检测模块的数量,降低了实现成本。
本发明公开了一种柑橘果实糖度的复杂性测度无损检测方法,包括步骤:采集M个训练样本和N个检验样本;采集训练样本和检验样本的原始图像;对原始图像进行裁切;对裁切后的图像进行去背景处理;对去背景处理后的图像进行边缘检测及果实区域提取,将RGB图像转换为HSI图像;求得HSI图像的复杂性测度C(Y)和信息熵H(Y);用糖度计测定训练样本的平均糖度;建立柑橘果实糖度无损检测模型;将检测样本的H(Y)和C(Y)输入无损检测模型,输出检测样本对应的糖度。本发明能够对柑橘果实糖度进行无损检测,实用性强,为生产和销售过程中柑橘内部品质分级提供了依据。
本发明公开了一种锚杆预紧力无损动力检测装置及其检测方法。所述锚杆预紧力无损动力测装置由锚杆连接杆、加速度传感器、承压筒、连接杆紧固螺母、扭矩扳手、激振撞杆、信号传输线、信号采集分析仪组成,其中锚杆连接杆螺纹固接在锚杆的外露端,加速度传感器固接在锚杆连接杆上,锚杆连接杆上套装承压筒。本发明利用由加速度传感器构成的检测装置进行信号采集,然后通过计算,可获得相应锚杆的预紧力检测、锚杆锚固长度的检测和锚杆工作载荷的监测。本发明解决了现有问题中采用扭矩扳手测定锚杆预紧力的准确性不高,只能相对评价一批锚杆预紧力的大小,不能真实检测锚杆的预紧力的问题。
本发明的第一目的在于提供一种无损检测预应力管道的压浆密实度的设备,包括相互独立设置的检测设备和坐标纸;检测设备包括用于发生电磁波的发射天线、用于接收反射回来的电磁波的接收天线、用于控制发射天线进行电磁波发射的信号发生触发器、用于将所述接收天线所接收到的电压信号转换为数字信号的A/D转换器、用于将所述A/D转换器转换后的数字信号进行处理的数据处理部件合与数据处理部件连接的输出显示部件。本发明装置整体结构精简,操作方便;通过多指标进行控制,检测精度高。本发明的第二目的在于提供一种无损检测预应力管道的压浆密实度的方法,工艺步骤精简,能够快速查找出疑似不密实区域并获得其内部压浆密实度情况,实用性强。
本发明公开了一种微裂纹无损检测系统及其检测方法。本发明的微裂纹无损检测系统包括信号发生器、低频激振器、高频激励器、被测构件、压电传感器、前置放大器、信号采集分析系统;所述信号发生器通过低频激振器和高频激励器与被测构件电连接,所述压电传感器通过粘接剂固定在被测构件上,所述信号采集分析系统通过前置放大器与压电传感器电连接;所述信号发生器能同时输出两路不同频率的简谐激励信号。本发明利用裂纹结构在多频激励下的非线性调制效应来进行缺陷检测,根据得到的响应谱中边频数量和幅值,直接判断被测构件是否存在微裂纹及微裂纹损伤的程度,不需要经过复杂的信号处理,使用方便,检测灵敏,检测效率高。
针对无损检测与毁灭性碰撞,分属量级与性质均截然不同的两个变形层次,至今尚未提出揭示这两个层次映射关系的数学/力学理论的现状,本发明提出一种基于人工智能的用于检测装备在毁灭性碰撞时承载能力的原位无损检测方法,其借助人工智能,在无损检测与毁灭性碰撞这两个量级与性质均截然不同的变形层次之间,建立起特殊联系机制。即基于机器学习理论,在装备的特征参数与毁灭性碰撞时装备的承载能力之间,架起一座人工智能的桥梁(AI模型),基于结构动力识别方法等无损检测方法获取装备的特征参数,再借助AI模型,获取毁灭性碰撞时装备的承载能力,实现毁灭性碰撞时装备承载能力的原位无损检测。与现有技术相比,本发明技术方案的有益效果是:利用无损检测方法实现毁灭性碰撞条件下装备承载能力的原位无损检测。
本发明公开一种基于伪随机编码的无损检测系统,包括电源装置、上位机、控制器、电控单元、换能器和信号采集部件,上位机输出伪随机编码序列;控制器将伪随机编码序列解码为脉冲并输出脉冲序列;电控单元接收脉冲序列后输出电压或电流信号给换能器,获得可控的换能器;信号采集部件记录冲击次数和频率并反馈给上位机;上位机进行处理。本发明方案结合伪随机序列编程控制,实现伪随机序列冲击,极大限度地抑制噪声和干扰,确保有效信号的精确识别和提取;通过电子脉冲扫频冲击,叠加单次冲击能量,实现无损检测距离和精度的提高。本发明还公开一种无损检测方法,采用上述基于伪随机编码的无损检测系统,能用于桥梁、混凝土结构无损检测领域。
中冶有色为您提供最新的湖南有色金属无损检测技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!