本发明提供了一种基于优化方差下降的计算机视觉单目标跟踪方法。该方法包括:根据单目标跟踪问题设计基于非凸优化的随机方差下降梯度的深度神经网络模型,对深度神经网络模型进行监督训练,根据训练好的深度神经网络模型使用基于回归动作奖励函数的强化学习方法训练表观模型与运动模型;利用训练好的表观模型、运动模型和深度神经网络模型对当前环境下的单目标进行跟踪,得到跟踪目标的预测位置和尺度;根据当前跟踪目标的位置和目标特征进行表观模型以及运动模型更新,进行下一帧的目标跟踪,直至跟踪结束。本发明的方法不仅运算速度更快,而且具有更稳定的模型探索能力,在绝大多数复杂场景下都能够达到更鲁棒的、高质量的目标跟踪效果。
声明:
“基于优化方差下降的计算机视觉单目标跟踪方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)