提供了采用基于空间和时间注意力的分层车道变换策略的深度强化学习来控制自主车辆的系统和方法。执行器‑评价网络架构包括:执行器网络,其处理从环境接收的图像数据以将车道变换策略作为分层动作的集合来学习;以及评价网络,其评估车道变换策略以计算损失和梯度来预测动作值函数(Q),其用于驱动学习车道变换策略以及更新其参数。执行器‑评价网络架构实施空间注意力模块以选择图像数据中重要的相关区域,以及时间注意力模块以学习要应用于过去的图像数据帧的时间注意力权重,从而指示在决定选择哪个车道变换策略时的相对重要性。
声明:
“用于控制自主车辆的分层车道变换策略的基于空间和时间注意力的深度强化学习” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)