本发明公开了一种基于多特征融合迁移学习的鸟类个体识别方法,包括:S1、对已知的鸟鸣信号进行预处理;S2、对预处理后的鸟鸣信号进行分帧和加窗处理,对得到的定帧长的鸟鸣信号利用线性调频小波生成语图;S3、对深度卷积神经网络进行处理;S4、将S2中生成的语图输入到S3的神经网络中获得不同层的特征向量,融合后得到最终的特征向量;S5、将最终的特征向量输入到支持向量机中,训练后得到识别模型;S6、对得到的识别模型进行性能检测,不断改进得到最终的识别模型;S7、将待测鸟鸣信号按照步骤S1、S2、S4进行处理得到最终的特征向量后,将其输入到S6的最终的识别模型中识别鸟类的种类和数量。
声明:
“一种基于多特征融合迁移学习的鸟类个体识别方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)