本发明涉及一种基于XGB和CatBoost双重提升树算法的滑坡预警方法,包括:S1:获取待测地区的历史地质因素特征数据和历史降雨特征数据;S2:对数据进行预处理,构建数据样本集;S3:建立XGB模型和CatBoost模型;S4:对XGB模型和CatBoost模型进行训练,其中基于数据样本集和XGB模型的预测的孔隙水压力数据集对CatBoost模型进行训练;S5:获取待测地区的实时地质因素特征数据和实时降雨特征数据,并将数据输入到XGB模型和CatBoost模型中,获得滑坡失稳的临界FOS值。S6:根据将滑坡失稳的临界FOS值的预设阈值得到预警级别。本发明通过搭建XGB和CatBoost双重提升树算法预警框架,通过结合近实时预测坡体的孔隙水压力,在较低的输入条件下对降雨诱发滑坡演变过程保持准确、高效的滑坡灾害预警。
声明:
“基于XGB和CatBoost双重提升树算法的滑坡预警方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)