本申请提供一种电阻率模型重构网络训练方法、电磁反演方法及装置,其中,所述方法包括:基于随机等效介质技术模拟矿床结构,并将所述矿床结构嵌入到随机的起伏地层结构中,得到包含矿床结构的地质模型;基于已有地质资料将所述地质模型转化为电阻率模型,并根据所述电阻率模型获取样本数据集,所述样本数据集包括随机模拟的起伏地层结构数据、矿床结构数据以及对应的电阻率数据;基于所述样本数据集对初始电阻率模型重构网络进行训练,得到电阻率模型重构网络,所述电阻率模型重构网络用于对第一电磁反演数据进行深度学习,得到第二电磁反演数据。本申请样本的随机性更高,有助于提高网络的准确性和泛化性,可有效提高深度学习的反演精度。
声明:
“电阻率模型重构网络训练方法、电磁反演方法及装置” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)