本发明涉及一种基于卷积神经网络的X光图像下矿石分选方法及系统,包括以下步骤:人为选定不同种类的矿石作为样本通过X光机;根据矿石原始通透率矩阵数据,对矿石内部图像进行染色;将染色后的图像进行分类标记,通过卷积神经网络进行训练,生成识别模型;将待识别矿石通过X光机并进行染色后,预测出待识别矿石的种类及位置。通过计算机人工智能的方式,使用X光机对于矿石内部进行成像,将X光机成像的染色图进行深度学习卷积神经网络的训练,可以在不进行其他化学检测手段外,模拟人的经验对于矿石分配评估的方式,对矿石含量等级进行识别预判,此方式接近人为分选的准确度,在分选行业公差内,可以实现实时、快速、成批量、低成本的分选。
声明:
“基于卷积神经网络的X光图像下矿石分选方法及系统” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)