合肥金星智控科技股份有限公司
宣传

位置:中冶有色 >

有色技术频道 >

> 通用技术

> 基于主动学习结合PNN的异常识别方法

基于主动学习结合PNN的异常识别方法

1274   编辑:管理员   来源:中冶有色技术网  
2023-03-18 00:30:01
本发明公开了一种基于主动学习结合PNN的异常识别方法,涉及异常体征识别技术领域,通过筛选最有价值的样本进行标记,既可降低人工标注成本,又可提高已标注样本的泛化能力。分类器能够主动选择包含信息量大的未标注的矿工体征数据并将其交由专家进行标注,然后置入训练集进行训练,从而在训练集较小的情况下获得较高的分类正确率,这样可以有效的降低构建高性能分类器的代价,提升训练效率,能取得传统监督学习算法所获得的近似分类准确率。PNN算法建模过程简单、训练速度快、分类更准确、容错性好。将主动学习与PNN算法相结合,用于体征异常矿工的识别,实现了矿工身体健康状态的高效且快速识别,完成了部分职业病的前期预警。
声明:
“基于主动学习结合PNN的异常识别方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)
分享 0
         
举报 0
收藏 0
反对 0
点赞 0
标签:
通用技术
全国热门有色金属技术推荐
展开更多 +

 

中冶有色技术平台微信公众号
了解更多信息请您扫码关注官方微信
中冶有色技术平台微信公众号中冶有色技术平台

最新更新技术

报名参会
更多+

报告下载

第二届中国微细粒矿物选矿技术大会
推广

热门技术
更多+

衡水宏运压滤机有限公司
宣传
环磨科技控股(集团)有限公司
宣传

发布

在线客服

公众号

电话

顶部
咨询电话:
010-88793500-807
专利人/作者信息登记