本申请实施例提供了一种ETA的预测方法、模型训练方法、装置及存储介质,涉及机器学习技术、地图、智慧交通、智慧出行等应用领域。该方法包括:获取目标用户在当前时间步的行程特征;行程特征包括当前时间步对应的时刻以及剩余导航路线的路线特征;将目标用户在当前时间步的行程特征输入至预先训练的ETA预测模型,获得当前时间步的ETA;预测模型在训练时的奖励函数的输入包括训练样本的ATA以及每一时间步的历史预测ETA序列;每一时间步的预测ETA是根据预测模型的策略函数在强化学习过程中根据每一时间步的行程特征预测出的ETA的概率分布获得的。本申请实施例考虑行程不断变化对ETA预测的影响,预测结果更加准确。
声明:
“ETA的预测方法、模型训练方法、装置及存储介质” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)