本发明公开了一种无人车强化学习训练环境构建方法及其训练系统,属于机器人导航领域与机器人仿真平台领域。包括:构建真实场景与仿真场景数据集;数据集增强;图像域转换算法的训练与模型保存;建立仿真环境模型与强化学习算法的API接口。在仿真环境中训练时,无人车模型上的摄像头采集观测到的仿真环境图像,经过图像域转换网络,转变为模拟的真实场景图片,作为状态输入强化学习网络,经过决策输出动作指令,发布给仿真端的无人车模型。在实际应用时,无人车摄像头采集现实中的真实场景图片,由于强化学习算法在训练时的输入的模拟真实场景图片与现实真实场景图片非常相似,因此训练好的算法可以直接迁移或者微调之后迁移至真实场景当中。
声明:
“无人车强化学习训练环境构建方法及其训练系统” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)