本发明提供了一种地质异常体识别的方法及其模型训练方法、装置,涉及地震勘探技术领域,该模型训练方法包括:获取样本区域的地震绕射波数据以及地震反射波数据;将地震反射波数据以及地震绕射波数据进行渲染,得到训练样本图像;将样本图像输入至预设的神经网络模型中进行训练,得到用于地质异常体预测的模型。通过将待识别的地震波数据图像输入至预先完成训练的地质异常体识别模型中即可输出地质异常体识别的结果。该方法利用分离之后的绕射波地震数据,采用叠合显示技术将地震反射波剖面与地震绕射波剖面叠合显示,再基于已知地质异常体数据完成神经网络模型的训练,最后通过输入实际的叠合显示地震数据实现研究区的地质异常体高精度预测。
声明:
“地质异常体识别的方法及其模型训练方法、装置” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)