本发明涉及一种激光诱导击穿光谱弱监督特征提取方法。本发明的目的是解决光谱数据维度过高时光谱强度‑浓度回归模型建立过程存在的的数据冗余和过拟合问题,所提出的特征选择方法结合线性判别分析LDA,利用类内类间散度值来对光谱各维特征进行评估和选择,以提高实际矿浆的品位分析准确度。具体步骤为:(1)使用类内类间散度评估每一维光谱的重要性;(2)以验证集的均方根误差确定输入回归模型的特征变量数,并最终获得优化的矿浆品位分析的光谱强度‑浓度回归模型。本发明所提特征选择方法降低了数据冗余带来建模复杂度,又因为变量选择过程不直接使用浓度参考值,对训练数据依赖小,鲁棒性高,可实际应用于选矿厂现场监控矿浆品位。
声明:
“激光诱导击穿光谱弱监督特征提取方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)