本发明属于铀矿领域,具体公开了一种使用机器学习模型的砂岩型铀成矿有利区预测方法,包括:步骤1、对砂岩型铀成矿样本特征和标签进行量化处理,建立铀成矿信息样本集合;步骤2、对铀成矿样本数据进行模型训练和机器学习,生成铀成矿有利区预测的神经网络模型;步骤3、根据所需要的预测精度,生成待预测区等间距规则预测点,并计算待预测点的砂岩铀成矿特征值;步骤4、使用机器学习模型计算规则待预测点的成矿概率值;步骤5、针对规则预测点成矿概率值特征进行插值,获取研究区的铀成矿概率图。本发明方法减少了地质人员主观因素的影响,提高了铀成矿有利区预测的智能化水平。
声明:
“使用机器学习模型的砂岩型铀成矿有利区预测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)