本发明涉及一种基于深度学习和支持向量机(SVM,Support Vector Machine)的页岩数字岩心三维重构方法,包括以下步骤:S1,利用三维数据模板扫描真实页岩岩心的体数据,获得页岩岩心的三维模式库;S2,采用深度信念网络(DBN,Deep Belief Networks)对三维模式库进行特征提取;S3,利用SVM对提取的特征进行分类,形成各个特征的类集合{Categoryi,i=1, 2, 3…};S4,利用多点地质统计法重构数字岩心。与现有技术相比,本发明使用深度学习和支持向量机进行页岩数字岩心的重构,深度学习具有很强的提取训练图像本质特征的能力,而支持向量机可以对页岩的结构特征分类,再利用多点地质统计法可以有效重构页岩数字岩心。
声明:
“基于深度学习和支持向量机的页岩数字岩心三维重构方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)