本发明公开了一种基于拓展卡尔曼滤波的多传感器融合SLAM方法,针对走廊相似场景下,激光SLAM算法由于观测数据的相似性,算法性能将严重劣化,甚至完全失效的问题,本发明将里程计和IMU的数据进行预处理,通过拓展卡尔曼滤波将两者的位姿信息融合,作为激光雷达扫描匹配更精确的迭代初始位姿;为验证本算法的性能,在Melodic版本的ROS(Robot Operating System)搭建了Gazebo仿真实验环境,通过仿真实验对比,验证了算法的鲁棒性和有效性。
声明:
“基于拓展卡尔曼滤波的多传感器融合SLAM方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)