一种基于循环神经网络融合的机械零部件健康指标构造方法,首先获取机械零部件振动信号,计算得到振动信号时域特征序列和频域特征序列;根据时域特征序列和频域特征序列计算相似性特征;对振动信号进行三层小波包变换,得到频带能量比特征;利用特征的综合评价指标筛选出机械零部件退化过程的敏感特征集,用以训练循环神经网络;通过敏感特征集和训练好的循环神经网络可以得到新的机械零部件健康指标RNN‑HI,本发明利用相似性特征和循环神经网络充分挖掘了机械零部件振动信号中的退化信息,不仅便于失效阈值的确定而且提高了寿命预测的精度。
声明:
“基于循环神经网络融合的机械零部件健康指标构造方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)