本发明涉及一种融合视觉里程计和BP网络的自适应行人航迹推算方法,属于机器视觉以及行人导航技术领域。包括:提出了一种融合视觉里程计和BP网络的自适应行人航迹推算方法,该方法将在线学习反向传播神经网络的卡尔曼滤波相结合,以RGB‑D相机的VO测量数据和IMU数据作为样本集训练BP神经网络,在VO失效时充当其替身实现多源数据融合,从而使得VPO提高了不同使用者和使用环境下航迹追踪的鲁棒性和精度。所述方法提高了步伐检测的成功率和补偿估计;在视觉失效时,能较为精确的计算步长;具有成本低、能耗低且实时性好的优势;有效提升了行人导航系统的鲁棒性和对不同装备者的自适应性。
声明:
“融合视觉里程计和BP网络的自适应行人航迹推算方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)