电子烟油理化指标的近红外光谱预测模型建立方法及应用,采集获取训练集电子烟油光谱信息,建立烟油近红外光谱数据训练集,对光谱数据进行预处理;然后使用分析计量仪器测量获取电子烟油的相对密度、折光指数和PH值;采用粒子群优化‑支持向量机回归(Particle Swarm Optimization‑Support Vector Regression,PSO‑SVR)算法,结合测量获取的理化指标建立近红外光谱预测模型。获取待测量电子烟油的近红外光谱信息并进行预处理,然后用建立的近红外光谱预测模型,直接测量该电子烟油的相对密度、折光指数和PH值,快速无损测量得到电子烟油的重要理化指标。本发明能够实现电子烟油重要理化指标的快速准确测量,对电子烟油重要理化指标的实时在线监测和其它质量参数的快速测量奠定了良好的基础。
声明:
“电子烟油理化指标的近红外光谱预测模型建立方法及应用” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)