本发明公开了一种基于多特征融合的肉类新鲜度高光谱图像可视化无损检测方法,克服了传统无损检测方法存在的检测精度稳定性和可靠性差的缺点。该方法的技术方案为:a、采集肉类样本的高光谱反射图像;b、提取高光谱反射图像在不同波段下的光强均值、图像熵、能量均值特征;c、分别建立三种特征和仪器破坏性检测获得的TVB-N的偏最小二乘预测模型,并获得关于TVB-N的无权重融合预估模型;e、采集待测肉样的高光谱图像,输入到建立好的无权重融合模型得到各像素的TVB-N预测结果,实现肉样腐败程度和区域的可视化检测。该方法能够在多数肉样无损的情况下,实现肉类新鲜度的快速可视化检测,具有简单快速度、预测精度高、鲁棒性好的优点。
声明:
“基于多特征融合的肉类新鲜度高光谱图像可视化检测” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)