本发明公开了一种基于融合特征波长选择算法的苹果酸度近红外无损检测方法,其步骤包括:1采集苹果样本标记点区域的光谱信息,测量苹果样本标记点区域的酸度数据;2对采集到的光谱进行预处理;3分别利用连续投影算法SPA与竞争自适应重加权采样算法CARS进行特征波长选择,并将二者所选择的特征波长进行融合;4根据融合后的特征波长对应的光谱与酸度数据,在校正集上建立苹果酸度的偏最小二乘PLS预测模型,并在预测集上对模型结果进行评估。本发明能兼顾选取的波长变量数目与建立的模型准确性,模型简单、检测效率高、实用性强,可为快速无损检测苹果的酸度提供重要手段,降低特定用途便携式近红外仪器的开发成本。
声明:
“基于融合特征波长选择算法的苹果酸度近红外无损检测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)