本发明提出了一种基于自举DQN的增强学习深度搜索方法,主要内容包括自举Deep?Q?Network(DQN)、深度搜索和环境背景;其中自举Deep?Q?Network包括自举样本和自举DQN,深度搜索包括深度搜索测试和自举DQN驱动深度搜索,环境背景包括生成在线自举DQN和自举DQN驱动。自举DQN是一种结合了深度学习与深度探索的实用强化学习算法,证明了自举可以对深度神经网络产生有效的不确定性估计,也可扩展到大规模的并行系统,在多个时间步骤上对信息进行排序,保证样本的多样性;在复杂的环境中自举DQN作为有效的增强学习中的一种算法,并行处理大量数据,计算成本低,学习效率高,性能表现优异。
声明:
“基于自举DQN的增强学习深度搜索方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)