本发明公开一种移动边缘计算网络下推荐赋能的边缘缓存优化方法,步骤包括:1)建立可推荐边缘缓存系统;2)获取当前待分析基站中所有服务用户、边缘服务器中的信息数据;3)初始化可推荐边缘缓存系统参数;4)确定t时刻的内容推荐策略5)计算t时刻的内容推荐策略的资源分配代价;6)建立基于强化学习的内容替换模型,并利用基于强化学习的内容替换模型更新边缘服务器的缓存内容;7)返回步骤2),重复迭代,直至时刻t=T,输出可推荐边缘缓存系统中的最优缓存内容T为运行周期。本发明解决了边缘服务端缓存内容利用率低,传输时间过长用户体验感不好等情况。减低了系统成本,提高了用户的服务质量。
声明:
“移动边缘计算网络下推荐赋能的边缘缓存优化方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)