本发明公开了一种基于DQN的高速公路监测视频去雾方法和系统,属于图像处理领域。由于强化学习本身性质,可灵活扩充去雾动作空间,获得更好的去雾效果;基于强化学习本身特性,是一种通过进行一系列序列决策,通过反复、多次从简单去雾图像处理动作集合中选取多个图像处理动作叠加式地完成图像去雾任务,符合人类专家进行修图的过程。本发明采用实际高速公路监测视频在不同能见度下进行训练,仅需当时当地能见度实况数值即可对去雾质量计算模型进行训练。并且通过去雾质量模型即可计算经过去雾处理后的图片对应的奖励值,进而引导强化学习去雾策略达到更好的去雾效果,无需带雾‑无雾图像真实数据集即可进行训练,大大降低了对数据集的要求。
声明:
“基于DQN的高速公路监测视频去雾方法和系统” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)