本发明公开了一种基于空间‑时间图注意力神经网络的密集行人环境下强化学习移动机器人的导航方法,首先使用了三维多物体跟踪JRMOT技术进行2D和3D的行人轨迹追踪技术,对行人的位置进行实时追踪,在让机器人使用空间‑时间图注意力STGAT模型,根据行人历史轨迹预测未来轨迹,当机器人在行人环境中有了各个行人的轨迹后,再使用蒙特卡洛树搜索和价值估计网络,做出最优决策,进行导航任务。本发明能够在密集行人环境下快速做出避障决策,拓展了移动机器人的应用场景。
声明:
“密集行人环境下强化学习移动机器人的导航方法及装置” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)