本发明针对细粒度图像最具有判别力的区域难以挖掘的问题,提出了一种基于强化学习和交叉双线性特征的细粒度识别方法。使用Actor‑Critic策略去挖掘图像最具有注意力的区域,Actor模块负责产生最具有判别力的top M个候选区域,Critic模块利用交叉双线性特征去评价此动作的状态值,然后利用排序一种性奖励计算当前状态下该动作的奖励值,进而得到价值优势并反馈给Actor模块,更新最具有注意力区域的输出,最后使用这些最具有判别力的区域结合原图特征进行预测细粒度类别。该方法可以较好的挖掘出细粒度图像最具有注意力的区域。经实验验证,本发明在CUB‑200‑2011公开数据集上的识别准确率比目前已有方法有一定的提升,分别达到了较高的细粒度识别准确率。
声明:
“基于强化学习策略的图像细粒度识别方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)