合肥金星智控科技股份有限公司
宣传

位置:中冶有色 >

有色技术频道 >

> 化学分析技术

> 基于监督式强化学习的最优控制方法

基于监督式强化学习的最优控制方法

945   编辑:管理员   来源:中冶有色技术网  
2023-03-19 07:03:20
本发明提出一种基于监督式强化学习的最优控制方法,包括步骤:步骤1,初始化控制器和评价器的人工神经网络的权值等参数,及一组训练数据集;步骤2,选择一组系统状态开始迭代;步骤3,监督式控制器产生初始稳定的控制策略,控制器通过调整自身权值逼近该控制策略;步骤4,控制器生成相应的控制动作,并附加一定的随机噪声作为探索;步骤5,将带有噪声的控制动作施加到被控制的系统上,观测下一时刻系统的状态和回报;步骤6,调整控制器和评价器的人工神经网络的权重;步骤7,判断当前状态是否满足终止条件,是则进入步骤8,否则回到步骤3;步骤8,判断初始的系统状态数据是否已经全部用于训练,是则输出最终的控制器,否则回到步骤2。
声明:
“基于监督式强化学习的最优控制方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)
分享 0
         
举报 0
收藏 0
反对 0
点赞 0
标签:
化学分析
全国热门有色金属技术推荐
展开更多 +

 

中冶有色技术平台微信公众号
了解更多信息请您扫码关注官方微信
中冶有色技术平台微信公众号中冶有色技术平台

最新更新技术

报名参会
更多+

报告下载

第二届中国微细粒矿物选矿技术大会
推广

热门技术
更多+

衡水宏运压滤机有限公司
宣传
环磨科技控股(集团)有限公司
宣传

发布

在线客服

公众号

电话

顶部
咨询电话:
010-88793500-807
专利人/作者信息登记