本发明涉及信息处理领域,具体是一种通过强化学习技术实现无人机自主飞行的方法,包括如下步骤:步骤一、获取模拟数据集和真实数据集;步骤二、提取图像特征和动作特征;步骤三、使用Q‑learn ing训练一个深度神经网络Q‑funct ion;步骤四、构建现实世界策略学习网络,将深度神经网络Q‑funct ion训练好的参数迁移至现实世界策略学习网络中,训练行动条件奖励预测函数;步骤五、输入状态向量和H个未来计划行动向量的序列至行动条件奖励预测函数,通过一个长短期记忆循环神经网络整合之后,并在将来的每个时间点输出预测的奖励;步骤六、根据预测的奖励实现自主飞行;该方法能够使机器人仅使用单目摄像机就可以避免碰撞以实现自主飞行。
声明:
“通过强化学习技术实现无人机自主飞行的方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)