本发明公开了一种基于语言模型和强化学习的关键词问答方法,包括以下步骤:(1)用关键词问题句和自然语言问题句的混合数据集来训练一个关键词问题分类器;(2)在自然语言问题句的数据集上预训练一个语言模型;(3)将步骤(2)中的语言模型高层网络提取,并用关键词问题句和其对应的自然语言问题句来训练一个含语言模型网络的问题重构模型来重构由步骤(1)判断为关键词问题句的问题;(4)将重构的问题句送入一个训练好的问答模型中,得到答案;(5)利用强化学习,以步骤(4)中预测答案和标准答案的相似度作为奖励函数来优化步骤(3)中的重构模型。利用本发明,可以大大提升了在大规模数据集上关键词问答任务的准确率。
声明:
“基于语言模型和强化学习的关键词问答方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)