本发明公开了一种基于图神经网络的强化学习集群蜂拥控制方法,包括以下步骤:建立集群蜂拥控制模型;确定集群的拓扑结构特征表示方法;确定智能体的观测信息特征表示方法;设计状态空间、行为空间与回报函数;设计深度强化学习算法中的策略网络与评价网络模型;设计算法框架及网络参数更新方法;设计集群蜂拥控制算法的训练流程。本发明借助深度强化学习技术实现集群蜂拥控制算法,利用图神经网络提取集群的拓扑结构特征以及观测信息特征,有效提高集群蜂拥控制算法的收敛速度和对动态环境的适应能力,同时能够保证在控制噪声等干扰下算法的稳定性。
声明:
“基于图神经网络的强化学习集群蜂拥控制方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)