本申请提供的一种基于深度强化学习的能源系统管理多时间尺度最优决策方法,通过基于长短期记忆人工神经网络的预测模型得出提前两步时间的
光伏电池组的输出功率以及负荷所需功率,从而利用深度强化学习方法对
储能电池组的充放电动作产生最优动作决策。本申请提供的一种基于深度强化学习的能源系统管理多时间尺度最优决策方法,考虑单一时间尺度中动作决策在某些情形下会造成系统饱和及不稳定的问题,可根据当前以及预测的未来两个时刻的系统状态,对储能电池组的充放电动作产生最优动作决策;充分考虑未来时刻的系统状态,提高系统动作决策的可靠性。
声明:
“基于深度强化学习的能源系统管理多时间尺度最优决策方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)