本发明涉及深度强化学习和金融量化交易领域,为基于强化学习算法与时间序列模型的股票交易方法及系统,其方法包括步骤:数据预处理,对收集的股票数据按类别进行整理,过滤错误数据、重复数据,数据归一化,预处理完成后得到得到股票数据集;建立时间序列模型预测股票价格,对股票基础价格数据集进行划分,建立并训练可用于股票基础价格数据的时间序列GRU模型,输出股票预测价格;股票交易强化学习模型输出决策,应用PPO算法训练智能体得到应用于股票交易的强化学习模型以输出股票交易的行动决策。本发明可以充分挖掘潜藏于股票基础数据中的信息,在股票交易环境中作出合理交易决策,为现实股票交易相关人员提供参考。
声明:
“基于强化学习算法与时间序列模型的股票交易方法及系统” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)