本发明提出一种基于模型预测与深度强化学习的热水系统控制方法,该方法将监督学习与近端策略优化方法进行结合,用于控制随机行为居住者的热水系统。首先,所提方法中的监督学习包括循环门控单元、深度神经网络判别器和时间序列预测模块。输入政策信息与行为信息,来预测未来一天居住者行为,并输出未来一天近端策略优化方法接入热水系统的概率。若概率小于阈值,则采用两点控制策略并继续训练智能体;反之,则采用近端策略优化方法。其次,所提方法中的近端策略优化方法能学习随机的居住者行为,无需特定调整即能应用在各种不同的居住场合,该方法能直接用于居住者家居,减少所需设备的安装与调试的时间,并且该方法的整体框架解释性比较优异。
声明:
“基于模型预测与深度强化学习的热水系统控制方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)