本发明公开了一种基于强化学习的模糊测试用例自适应变异方法和装置,该方法选择与待变异测试用例类型对应的变异操作组进行自适应变异的学习,从而能够有针对性地选择变异策略,进而实现更为细粒度的变异操作;本发明进一步采用类型信息和变异操作组成上下文信息输入单步强化学习模型,单步强化学习模型将不同变异操作的选择问题转化为多臂赌博机问题中不同摇臂的选择,使用上下文相关的置信区间上界算法LinUCB进行自适应变异操作的学习,以实现不同类型场景下的变异操作自适应学习,从而采用能够获得更高路径覆盖率的变异操作进行测试用例变异,提高模糊测试自适应变异的效率和质量。
声明:
“基于强化学习的模糊测试用例自适应变异方法和装置” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)