本发明公开一种基于强化学习的异常推荐数据检测方法和系统,主要聚焦于推荐系统中的多模态异常数据识别,依赖强化学习算法,针对半监督异常数据,提出了一种针对“一致异常”和“不合异常”同时进行识别的方法。该方法通过和推荐系统进行交互,在用户数据收集之后,传入推荐系统之前,由本发明提出的方法进行识别,将其中的异常数据进行剔除,并将正常的数据传送给推荐系统,经由推荐系统处理之后将结果反馈给用户。本发明容易融合不同模态的信息,获得更好的效果。
声明:
“基于强化学习的异常推荐数据检测方法和系统” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)