本发明涉及光谱分析领域,具体是基于互信息特征筛选PLS的LIBS铁矿浆定量分析方法。针对数据存在噪声和光谱数据维度过高带来的问题,提出一种基于互信息特征筛选偏最小二乘的LIBS的定量分析方法以提高矿浆品位分析精度。具体步骤为:(1)计算训练样本每列特征与标签的互信息量;(2)训练集中去除互信量为0的a个特征;(3)测试集保留与训练集剩余特征相同的特征列;(4)利用确定的特征个数,建立PLS模型,通过训练集的解释方差和均方误差来确定主成分个数。本发明提供了一种降低数据维度并有效选出光谱数据特征的方法,提高了分析精度。可实际应用于选矿厂现场监控矿浆品位分析监测。
声明:
“基于互信息特征筛选PLS的LIBS铁矿浆定量分析方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)