本发明提出了一种基于PSO‑SVM算法和图像识别的围岩质量在线分级方法,其步骤为:选择实时获取的围岩地质参数和掘进参数作为输入指标;利用岩渣图像拍摄装置对TBM皮带机上的岩渣进行图像拍摄,利用图像识别处理方法获取岩渣的粒度分布;基于PSO‑SVM智能算法构建围岩分级理论下的SVM学习模型,将学习样本数据输入SVM学习模型;利用PSO算法优化SVM学习模型的参数,利用优化参数建立SVM预测模型,将检验样本数据组成的样本训练集输入到SVM预测模型,得到围岩实时分级输出结果。本发明基于粒子群的支持向量机算法对围岩进行实时分级,可准确预测当前掘进地层的围岩质量,实现掘进参数的适时调整优化,保障安全高效施工。
声明:
“基于PSO-SVM算法和图像识别的围岩质量在线分级方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)