本发明提出一种基于机器学习的井间连通性评价方法,包括:1)根据数值模拟技术获取数据集,包括动态数据与静态数据;2)对样本数据集中的动态数据进行特征关联性提取;3)对动态数据与储层样本中的静态数据进行归一化处理;4)将样本数据集划分为训练集与测试集,并构建机器学习模型的输入与输出;5)使用机器学习方法对模型的权值矩阵与偏置矩阵激进行训练,获得训练模型;6)验证所述训练模型归一化后计算结果的准确性与有效性;7)利用所述训练模型根据动态数据计算出的地层平均渗透率定义井间的连通系数,表征井间连通性。本发明的方法只需要油田中最容易获取的各个井的动态生产数据得到储层地质信息,进而得到井间连通性。
声明:
“基于机器学习的井间连通性评价方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)