合肥金星智控科技股份有限公司
宣传

位置:中冶有色 >

有色技术频道 >

> 采矿技术

> 矿山采空区充填体智能混合制备方法

矿山采空区充填体智能混合制备方法

1451   编辑:中冶有色技术网   来源:北京首钢矿山建设工程有限责任公司  
2022-11-03 15:24:41

权利要求

1.矿山采空区充填体智能混合制备方法,其特征在于,包括以下步骤: S1. 准备矿山采空区充填体的制备材料,将制备材料通过神经网络计算得出填充体最佳状态对应制备材料和水的质量比例; S2. 将得到的浆料通过弹性约束优化算法进一步对浆料浓度进行控制,将稳定浓度的浆料进行充分混合搅拌后泵送至充填区域。2.如权利要求1所述的矿山采空区充填体智能混合制备方法,其特征在于,所述步骤S1包括: 将采空区进行分区域划分,并对每个采空区区域的环境因素进行采集,并将采集到的上述信息组成条件向量以及所选择的制备材料种类集合 作为输入层输入,通过神经网络中隐含层以及输出层作用得到每种制备材料在各影响因素构成的条件向量对充填体的影响特征矩阵,根据适度调整配比、各影响因素以及影响特征向量M,进一步计算充填体强度变化率;最后,利用最优算法计算得到最高充填体强度时对应的充填材料的配比,将充填材料通过给料机送至称量斗称量,将充填材料按照所述配比加水送入搅拌机搅拌均匀,得到质量浓度为 的浆料。 3.如权利要求1所述的矿山采空区充填体智能混合制备方法,其特征在于,所述步骤S2包括: 通过影响充填过程中浆料浓度的因素,约定浆料浓度的弹性约束条件,定义浆料浓度控制目标函数,根据模型的计算求得的最优解对相关设备进行控制。 4.如权利要求3所述的矿山采空区充填体智能混合制备方法,其特征在于,所述步骤S2包括: 通过构建条件约束模型,得到浆料浓度的弹性约束条件,具体过程如下:  其中,F表示影响因素向量,QF表示影响因素的权重向量,由矿区根据实际情况确定,R表示各因素计算关系式集合,D表示各影响因素的限定门限集合,Out表示条件约束模型的输出,即浆料浓度的弹性约束条件; 最终,通过影响因素的权重向量,各因素计算关系式集合,各影响因素的限定门限集合计算得到弹性约束条件: , 表示所有门限最低门限值。 5.如权利要求4所述的矿山采空区充填体智能混合制备方法,其特征在于,所述步骤S2包括: 创建浆料浓度弹性约束控制优化模型:    其中,Y表示充填过程完成度,F表示影响因素集合, ,C表示各影响因素控制参数,A表示约束矩阵, ,p表示约束条件的个数,q表示影响因素的个数,AF表示满足约束条件的函数表达式, D表示约束函数AF的限定条件门限, ; 表示所有变量满足的最低门限, ;在求解最优解时,看作求解微分方程组,对约束矩阵A进行简化处理,求得上述微分方程的解 ,最后根据求得的解对应的C进行各个设备的调整控制。

说明书

矿山采空区充填体智能混合制备方法

技术领域

本发明涉及采空填充技术技术领域,尤其涉及一种矿山采空区充填体智能混合制备方法。

背景技术

随着经济的发展,社会对矿产品的需求大幅度增加,加之可利用矿产的品位日益降低,矿产开发规模随之加大,产生的尾矿量不断增加。尾矿堆存占地大、环境污染严重、安全隐患多等问题日益突出。其中,尾矿充填采空区的存在使得矿山的安全生产面临很大的安全问题,人员与机械设备都可能掉入采空区内部收到伤害。

对于采空区进行的处理多采用填埋的方式,但是使用砂料填埋,成本太高难以承受;使用石块填埋会出现滚动现象,无法有效的固定石块。所以现在亟需一种可以进行填埋的材料。我国发明专利申请号CN201710692437.X,公开了一种矿山采空区充填浆料的制备方法,包括:将磷石膏、黄土、矿渣和钢渣混合搅拌,得到预混料;将预混料与减水剂混合搅拌,得到胶凝剂;将胶凝剂、水泥和水混合搅拌,得到充填浆料。该发明针对矿山充填的要求,开发出了以磷石膏和黄土为原料的矿山充填浆料,与现用水泥相比,该发明浆料的强度整体比现用的水泥要好,能完全满足矿山充填所要求的流动性。

但在实现上述申请实施例的技术方案的过程中,发现上述技术至少存在如下技术问题:制备的填充体强度差,填充体成分控制精准度较差。

发明内容

本发明通过提供一种矿山采空区充填体智能混合制备方法,解决了现有制备方法制备的填充体强度差,填充体成分控制精准度较差的问题。

本发明提供了一种矿山采空区充填体智能混合制备方法,具体包括以下技术方案:

一种矿山采空区充填体智能混合制备方法,包括以下步骤:

S1. 准备矿山采空区充填体的制备材料,将制备材料通过神经网络计算得出填充体最佳状态对应制备材料和水的质量比例;

S2. 将得到的浆料通过弹性约束优化算法进一步对浆料浓度进行控制,将稳定浓度的浆料进行充分混合搅拌后泵送至充填区域。

进一步,所述步骤S1包括:

将采空区进行分区域划分,并对每个采空区区域的压强,温度,湿度,时间以及环境因素进行采集,并将采集到的上述信息组成条件向量以及所选择的制备材料种类集合 作为输入层输入,通过神经网络中隐含层以及输出层作用得到每种制备材料在各影响因素构成的条件向量对充填体的影响特征矩阵,根据适度调整配比、各影响因素以及影响特征向量M,进一步计算充填体强度变化率;最后,利用现有技术最优算法计算得到最高充填体强度时对应的充填材料的配比,将充填材料通过给料机送至称量斗称量,将充填材料按照所述配比加水送入搅拌机搅拌均匀,得到质量浓度为 的浆料。

进一步,所述步骤S2包括:

通过影响充填过程中浆料浓度的因素,约定浆料浓度的弹性约束条件,定义浆料浓度控制目标函数,根据模型的计算求得的最优解对相关设备进行控制。

进一步,所述步骤S2包括:

通过构建条件约束模型,得到浆料浓度的弹性约束条件,具体过程如下:

其中,F表示影响因素向量,QF表示影响因素的权重向量,由矿区根据实际情况确定,R表示各因素计算关系式集合,D表示各影响因素的限定门限集合,Out表示条件约束模型的输出,即浆料浓度的弹性约束条件;

最终,通过影响因素的权重向量,各因素计算关系式集合,各影响因素的限定门限集合计算得到弹性约束条件: , 表示所有门限最低门限值。

进一步,所述步骤S2包括:

创建浆料浓度弹性约束控制优化模型:

其中,Y表示充填过程完成度,F表示影响因素集合, ,C表示各影响因素控制参数,A表示约束矩阵, ,p表示约束条件的个数,q表示影响因素的个数,AF表示满足约束条件的函数表达式, D表示约束函数AF的限定条件门限, ; 表示所有变量满足的最低门限, ;在求解最优解时,看作求解微分方程组,对约束矩阵A利用现有技术(简化矩阵处理)进行简化处理,求得上述微分方程的解 ,最后根据求得的解对应的C进行各个设备的调整控制。

本发明至少具有如下技术效果或优点:

1、本发明通过充填体制备材料的物理性能、化学性能以及颗粒结构和形貌特征,结合矿山采空区的特性,自适应地选择制备材料,建立充填模型,同时结合试验来进行初步制备材料配比,为增加充填体的强度提供初步依据。

2、本发明通过利用神经网络学习得到各影响因素对充填体的影响特征向量,进一步通过利用最优算法计算充填体最高强度得到充填体制备材料的配比,从而获得具有更大强度的充填体制备材料的配比。

3、本发明通过构建条件约束模型,利用影响因素更准确的获取浆料浓度影响约束条件,为进一步对浆料浓度控制提供基础,提高矿山采空区充填体制备的控制精确度。

4、本发明通过利用浆料浓度影响因素以及充填过程完成度构建浆料浓度弹性约束控制优化模型, 进一步对输送设备以及部分制备设备进行控制调整,增加了控制的准确性,提高了制备的充填体的强度。

附图说明

图1为本发明所述的一种矿山采空区充填系统框图;

图2为本发明所述的一种矿山采空区充填智能混合制备步骤图。

具体实施方式

本申请实施例通过提供一种矿山采空区充填体智能混合制备方法,解决了现有制备方法制备的填充体强度差,填充体成分控制精准度较差的问题。

本申请实施例中的技术方案为解决上述问题,总体思路如下:

首先,准备矿山采空区充填体的制备材料,将制备材料通过人工智能计算得出填充体最佳状态对应制备材料和水的质量比例;最后,将得到的浆料通过最优算法进一步对浆料浓度进行控制,将稳定浓度的浆料进行充分混合搅拌后泵送至充填区域。通过充填体制备材料的物理性能、化学性能以及颗粒结构和形貌特征,结合矿山采空区的特性,自适应地选择制备材料,建立充填模型,同时结合试验来进行初步制备材料配比,为增加充填体的强度提供初步依据;通过利用神经网络学习得到各影响因素对充填体的影响特征向量,进一步通过利用最优算法计算充填体最高强度得到充填体制备材料的配比,从而获得具有更大强度的充填体制备材料的配比;通过构建条件约束模型,利用影响因素更准确的获取浆料浓度影响约束条件,为进一步对浆料浓度控制提供基础,提高矿山采空区充填体制备的控制精确度;通过利用浆料浓度影响因素以及充填过程完成度构建浆料浓度弹性约束控制优化模型, 进一步对输送设备以及部分制备设备进行控制调整,增加了控制的准确性,提高了制备的充填体的强度。

为了更好的理解上述技术方案,下面将结合说明书附图以及具体的实施方式对上述技术方案进行详细的说明。

参照附图1,本发明所述的一种矿山采空区充填体智能混合制备方法包括以下部分:

通过控制室监控整个运作过程,将现场工作的每一台机器设备和工作参数传输给PLC,所述PLC中的CPU存储着所有的系统控制程序,控制着程序的运行,运行参数会被储存在CPU当中,PLC再与监控站交换数据,将每一台机器的工作状态显示出来,所述监控站可以利用工业网络从CPU当中读取数据,监控器运行情况。工作人员可以依据这些数据来对现场工作机器发布命令,这些指令首先经过PLC,跟输入信号进行结合,按照已经编号的程序对其翻译,并将翻译结果传给输出端,通过各个输出端信号就可以完成对现场机器的控制,进一步通过自适应的调节制备站对充填体进行智能混合制备,实现矿山采空区充填体智能混合制备方法,进一步通过输送系统进行采空区的充填。所述制备站包含所有充填体制备所需的部分,有料仓、水池、给料机、称量斗、搅拌机、充填泵等相关部分。

参照附图2,本发明所述的一种矿山采空区充填体智能混合制备方法包括以下步骤:

S1. 准备矿山采空区充填体的制备材料,将制备材料通过神经网络计算得出填充体最佳状态对应制备材料和水的质量比例。

准备矿山采空区充填体的制备材料,所述充填体制备材料根据实际需求自行确定。在本发明中记所选制备材料种类有N种,通过集合来表示制备材料种类集合为: 

作为一个具体实施例,矿山采空区充填体制备材料包括粗颗粒废料、细颗粒废料、胶凝材料和水;粗颗粒废料包括煤矸石、炉渣等;细颗粒废料包括粉煤灰等;胶凝材料包括有机与无机两大类。石灰、石膏、水泥等工地上俗称“灰”的建筑材料属于无机胶凝材料;而沥青、天然或合成树脂等属于有机胶凝材料。

通过查阅以及经验得到每种制备材料的物理性能、化学性能以及颗粒结构和形貌特征,结合矿山采空区的特性,自适应地选择 n种制备材料,结合现有建模技术建立充填模型,通过对制备材料的软化点、延伸度、耐热度、加热损失、吸水性、柔性以及其他相关特性进行试验或查询获取,同时结合试验,所述试验指按照由低到高的增加制备材料比例,对制备材料进行配比,使得制备材料的上述特性通过增加比例达到期望值,综合性能最高时得到初步制备材料配比,所述综合性能指。

本发明通过充填体制备材料的物理性能、化学性能以及颗粒结构和形貌特征,结合矿山采空区的特性,自适应地选择制备材料,建立充填模型,同时结合试验来进行初步制备材料配比,为增加充填体的强度提供初步依据。

混合过程中,数量、压强,湿度,温度,时间,环境因素,利用神经网络,以及最优求解。

随后,通过神经网络,结合在混合过程中,初步配比,压强,温度,湿度,时间以及环境因素对配比的影响来完成最终充填体制备材料的配比。

具体过程如下:

将采空区进行分区域划分,并对每个采空区区域的压强,温度,湿度,时间以及环境因素进行采集,并将采集到的上述信息组成条件向量以及所选择的制备材料种类集合 作为输入层输入,即 ,其中P表示压强,T表示温度,W表示湿度,time表示时间,S表示环境因素,Other表示其他影响因素。

特别地,在输入层输入向量中的元素,都是随着矿山采空区实际情况环境,时间,变化而变化。

通过神经网络中隐含层以及输出层作用得到每种制备材料在各影响因素构成的条件向量对充填体的影响特征矩阵, ,其中, 表示第N种制备材料在各影响因素构成的条件向量对充填体的影响特征向量,  , 分别表示该种制备材料在压强,温度,湿度,时间,环境因素以及其他影响因素对充填体轻度的影响值。

根据适度调整配比、各影响因素以及影响特征向量 M,进一步计算充填体强度变化率。计算如下:

其中, 、 、 、 表示任一采空区区域块的压强、温度、湿度、环境因素, 、 、 、 表示所有采空区区域块的算术平均压强、温度、湿度、环境因素,n表示采空区区域块块数, 表示时间影响函数, 表示第 i种制备材料的配比参数, 

最后,利用现有技术最优算法计算得到最高充填体强度时对应的充填材料的配比,将充填材料通过给料机送至称量斗称量,将充填材料按照所述配比加水送入搅拌机搅拌均匀,得到质量浓度为 的浆料。

本发明通过利用神经网络学习得到各影响因素对充填体的影响特征向量,进一步通过利用最优算法计算充填体最高强度得到充填体制备材料的配比,从而获得具有更大强度的充填体制备材料的配比。

S2. 将得到的浆料通过弹性约束优化算法进一步对浆料浓度进行控制,将稳定浓度的浆料进行充分混合搅拌后泵送至充填区域。

在对矿山进行充填时,因为浆料的浓度会受到很多因素的影响,导致浆料的浓度并不是呈现线性变化,易出现滞后现象,常用算法不能很好的控制浆料浓度,严重影响浆料的传输与填充。

影响充填过程中浆料浓度的主要因素包括,搅拌速率,浆料流速、充填倍线、充填输送管径、充填空区大小、充填管路的选择,输送损耗、输送环境、矿浆泵电机功率以及其他相关影响因素。

本发明通过上述影响因素,约定浆料浓度的弹性约束条件,定义浆料浓度控制目标函数,根据计算求得的最优解对搅拌机、充填泵、输送管路以及其他相关设备进行控制。

进一步,通过构建条件约束模型,得到浆料浓度的弹性约束条件,具体过程如下:

其中, F表示影响因素向量, QF表示影响因素的权重向量, R表示各因素计算关系式集合, D表示各影响因素的限定门限集合, Out表示条件约束模型的输出,即浆料浓度的弹性约束条件。

特别地, QF由矿区根据实际情况确定, R由搅拌速率,浆料流速、充填倍线、充填输送管径、充填空区大小、充填管路的选择,输送损耗、输送环境以及其他相关影响因素的计算关系式组成。

进一步,在各因素计算关系式集合 R中,充填空区:

其中, 表示矿区年充填量, 表示矿山采矿生产能力, 表示井下采充比, 表示矿石/尾砂密度。

稳定浓度的充填区有效容积:

其中, 表示清水阻力损失, 表示体积浓度,v表示流速, g表示重力加速度, d表示输送管道的管径。

最终,通过影响因素的权重向量,各因素计算关系式集合,各影响因素的限定门限集合计算得到弹性约束条件: 表示所有门限最低门限值。

本发明通过构建条件约束模型,利用影响因素更准确的获取浆料浓度影响约束条件,为进一步对浆料浓度控制提供基础,提高矿山采空区充填体制备的控制精确度。

进一步,本发明创建浆料浓度弹性约束控制优化模型为:

其中, Y表示充填过程完成度, F表示影响因素集合, , C表示各影响因素控制参数, A表示约束矩阵, ; p表示约束条件的个数, q表示影响因素的个数, AF表示满足约束条件的函数表达式, D表示约束函数AF的限定条件门限, ; 表示所有变量满足的最低门限, 

在求解最优解时,可以看作求解微分方程组,对约束矩阵 A利用现有技术(简化矩阵处理)进行简化处理,求得上述微分方程的解 ,最后根据求得的解对应的 C进行各个设备的调整控制。

本发明通过利用浆料浓度影响因素以及充填过程完成度构建浆料浓度弹性约束控制优化模型, 进一步对输送设备以及部分制备设备进行控制调整,增加了控制的准确性,提高了制备的充填体的强度。

综上所述,便完成了本发明所述的一种矿山采空区充填体智能混合制备方法。

本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。

这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。

显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

全文PDf

矿山采空区充填体智能混合制备方法.pdf

声明:
“矿山采空区充填体智能混合制备方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)
分享 0
         
举报 0
收藏 0
反对 0
点赞 0
全国热门有色金属技术推荐
展开更多 +

 

中冶有色技术平台微信公众号
了解更多信息请您扫码关注官方微信
中冶有色技术平台微信公众号中冶有色技术平台

最新更新技术

报名参会
更多+

报告下载

第二届中国微细粒矿物选矿技术大会
推广

热门技术
更多+

衡水宏运压滤机有限公司
宣传
环磨科技控股(集团)有限公司
宣传

发布

在线客服

公众号

电话

顶部
咨询电话:
010-88793500-807
专利人/作者信息登记